If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+18d-144=0
a = 1; b = 18; c = -144;
Δ = b2-4ac
Δ = 182-4·1·(-144)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-30}{2*1}=\frac{-48}{2} =-24 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+30}{2*1}=\frac{12}{2} =6 $
| 35.75+.13x=x | | 12x^2-8x-64=0 | | 6x(x+4)(3x-5)=0 | | -5=3+x/2 | | 46x(6+1)=0 | | p/2-5=5 | | 3x-3.5=0.6x-1.96 | | t/9-1=8 | | 4x+84=5x+24 | | -5x(12)=200 | | 15+y=4*7 | | 2x+3x+10=5 | | 163=221-u | | v-15=12 | | 2x^2-2=11 | | -w+179=126 | | b/4+3=6 | | (6x)(x+15)=0 | | -9-x/7=-10 | | 1/2(6x-8)=23 | | -w+42=273 | | 3q=69 | | 5=240-u | | 0.50x+4=0.25x+10 | | r/5+6=2 | | 154=-v+203 | | 5.2z =16 | | 15+y=4.7 | | 3x-8=5x-12=4x+13 | | 65=5+4w | | 9(1/3)+8x=4(2x+3/4 | | 13-x/2=25 |